Mechanistic understanding of MeHg-Se antagonism in soil-rice systems: the key role of antagonism in soil
نویسندگان
چکیده
Methylmercury (MeHg) accumulation in rice has great implications for human health. Here, effects of selenium (Se) on MeHg availability to rice are explored by growing rice under soil or foliar fertilization with Se. Results indicate that soil amendment with Se could reduce MeHg levels in soil and grain (maximally 73%). In contrast, foliar fertilization with Se enhanced plant Se levels (3-12 folds) without affecting grain MeHg concentrations. This evidence, along with the distinct distribution of MeHg and Se within the plant, demonstrate for the first time that Se-induced reduction in soil MeHg levels (i.e., MeHg-Se antagonism in soil) rather than MeHg-Se interactions within the plant might be the key process triggering the decreased grain MeHg levels under Se amendment. The reduction in soil MeHg concentrations could be mainly attributed to the formation of Hg-Se complexes (detected by TEM-EDX and XANES) and thus reduced microbial MeHg production. Moreover, selenite and selenate were equally effective in reducing soil MeHg concentrations, possibly because of rapid changes in Se speciation. The dominant role of Se-induced reduction in soil MeHg levels, which has been largely underestimated previously, together with the possible mechanisms advance our mechanistic understanding about MeHg dynamics in soil-rice systems.
منابع مشابه
Selenium in soil inhibits mercury uptake and translocation in rice (Oryza sativa L.).
A great number of studies have confirmed that mercury-selenium (Hg-Se) antagonism is a widespread phenomenon in microorganisms, fish, poultry, humans, and other mammals. However, by comparison, little attention has been paid to plants. To investigate the influence of Se on the uptake and translocation of methylHg/inorganic Hg (MeHg/IHg) in the rice-soil system, we determined the levels of Se, I...
متن کاملSelenium modulates mercury uptake and distribution in rice (Oryza sativa L.), in correlation with mercury species and exposure level.
Rice cultured in Hg- and/or Se-contaminated fields is an important food source of human Hg/Se intake. There are elevated Hg and Se levels in the soil of the Wanshan District, Guizhou Province. Here we attempted to explore how a Hg antagonist, Se, modulates the absorption and accumulation of inorganic mercury (IHg) and methylmercury (MeHg) in rice. The effects of Se on the content and transporta...
متن کاملتأثیر روی و مس و شکلهای شیمیایی آنها بر رشد و ترکیب شیمیایی برنج در یک خاک آهکی
Due to low availability of zinc and copper in calcareous soils and the antagonism of these nutrients with each other, the study of their effects on growth and chemical composition of rice seems to have great importance. Also, the relations among different chemical forms of Zn and Cu and plant responses are very important, which can be used in investigation of antagonisms of these nutrients as w...
متن کاملCharacterization of mercury species in brown and white rice (Oryza sativa L.) grown in water-saving paddies.
In China, total Hg (HgT) and methylmercury (MeHg) were quantified in rice grain grown in three sites using water-saving rice cultivation methods, and in one Hg-contaminated site, where rice was grown under flooded conditions. Polished white rice concentrations of HgT (water-saving: 3.3±1.6 ng/g; flooded: 110±9.2 ng/g) and MeHg (water-saving 1.3±0.56 ng/g; flooded: 12±2.4 ng/g) were positively c...
متن کاملComparision of fertility capability and taxonomic classification systems to classify the soil map units in some parts of Chaharmahal-va-Bakhtiari province
Although fertility capability classification (FCC) has high performance in land evaluation and soil maps interpretation, so far it has been less attended in land evaluation studies. Therefore, qualitative (FCC method) and quantitative (Riquer index) land fertility capability evaluation for Wheat and Rice cultivation and comparison of Soil Taxonomy and WRB classification with FCC were chosen as ...
متن کامل